Работа синтезаторов частот Г7М с внешним импульсным модулятором Рекомендации по использованию

В отличие от синтезаторов частот Г7М-04-ИМА, позволяющих формировать непрерывные гармонические сигналы и сигналы с импульсной модуляцией, синтезаторы частот Г7М-20, Г7М-20А, Г7М-40 (далее по тексту синтезаторы) предназначены только для формирования непрерывных гармонических сигналов. В приложениях, где требуется формирование сигналов с импульсной модуляцией, совместно с синтезатором необходимо использовать внешний импульсный модулятор (далее по тексту модулятор). Управление модулятором может осуществляться от внешнего источника модулирующих сигналов или от источника модулирующих сигналов, встроенного в синтезатор. В качестве источника модулирующих сигналов встроенного в синтезатор может быть использован синхрогенератор, сигнал которого формируется на выходе синхронизации «СИНХР», или генератор импульсов сигнал которого формируется на выходе «ДОП2».

Синхрогенератор

Примечание:

Возможность использования синхрогенератора в качестве источника модулирующего сигнала доступна в синтезаторах частот Г7М выпущенных или прошедших сервисное обслуживание, поверку в ЗАО «НПФ «Микран» после 01.03.2013. Для управления синхрогенератором необходимо использовать программный комплекс Г7М версия 1.3 и старше.

По вопросам реализации данной возможности в остальных синтезаторах частот Г7М обращайтесь в ЗАО «НПФ «Микран» на адрес электронной почты: pribor@micran.ru.

Синхрогенератор синтезатора формирует периодическую последовательность импульсов. Синхрогенератор работает независимо от режима работы синтезатора и состояния включения/выключения мощности на выходе «СВЧ». Параметры сигнала синхрогенератора представлены в таблице 1.

Управление синхрогенератором осуществляется с помощью элементов, расположенных на вкладке «Синхронизация» (см. рисунок 1).

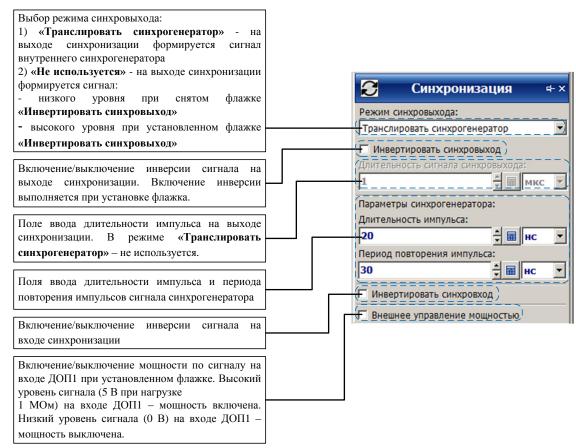


Рисунок 1 – Элементы вкладки «Синхронизация»

Таблица 1 – Параметры синхрогенератора

Параметр	Значение
Длительность импульсов	от 20 нс до 3,99999998 с ^{1) 2)}
Период повторения импульсов	от 30 нс до 4 с ^{1) 2)}
Дискретность установки длительности и периода	10 нс ¹⁾
следования импульсов	
Длительность фронта/среза импульса	
при сопротивлении нагрузки 50 Ом	не более 1,5 нс
при сопротивлении нагрузки 1 МОм	не более 20 нс ³⁾
Напряжение высокого уровня (номинальное значение)	
при нагрузке 50 Ом	1,5 B
при нагрузке 1 МОм	5 B
Напряжение низкого уровня (номинальное значение)	0 B
П	

Примечания:

¹⁾ – Значения, устанавливаемые в программном обеспечении. Фактические значения периода повторения и длительности импульсов кратны фактической дискретности установки Тд≈10,1725 нс. Для определения фактических значений периода и длительности импульса можно воспользоваться следующим выражением:

$$T \phi \text{AKT} := \text{trunc} \left(\frac{\text{trunc} \left(\frac{\text{trunc} \left(\frac{\text{Tycr}}{5} \right) \cdot 4 + 2}{5} \right) \cdot 4 + 2}{5} \right) \cdot 4 + 2}{5} \right) \cdot 3 + 2}{5} \right) \cdot T_{\text{Д}}$$

где Тфакт – фактическое значение периода или длительности импульсов;

Туст – установленное значение периода или длительности импульсов;

Тд – фактической значение дискретности установки;

trunc – функция округления до ближайшего меньшего целого.

²⁾ – Для приборов, выпущенных до 01.09.2013, максимальное значение периода повторения импульсов 170 мс, максимальное значение длительности импульса 169.99998 мс.

³⁾ – Увеличение длительности фронта/среза импульса при изменении нагрузки с 50 Ом до 1 МОм, обусловлено искажением формы импульса (см. рисунки 2, 3). Данное искажение не влияет на совместную работу синтезатора частот Г7М с импульсными модуляторами МИ1-20, так как пороговые напряжения включения/выключения модулятора находятся за пределами искажений.

На рисунках 2, 3 представлены примеры осциллограмм сигналов, сформированных на выходе синхрогенератора.

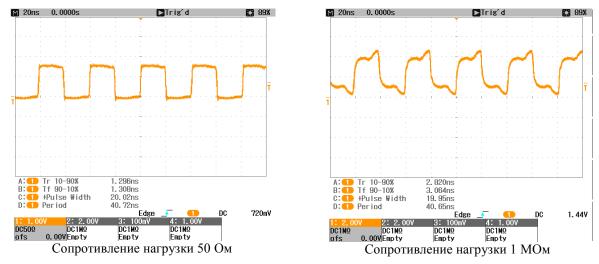


Рисунок 2 – Осциллограммы сигналов на выходе синхрогенератора. Длительность импульса 20 нс. Период повторения импульсов 40 нс.

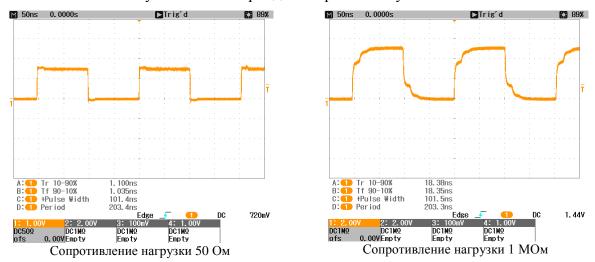


Рисунок 3 — Осциллограммы сигналов на выходе синхрогенератора. Длительность импульса 100 нс. Период повторения импульсов 200 нс.

Генератор импульсов

Примечание:

Возможность использования генератора импульсов в качестве источника модулирующего сигнала доступна в синтезаторах частот Г7М, выпущенных или прошедших сервисное обслуживание, поверку в ЗАО «НПФ «Микран» после 01.10.2013 при условии установки программной опции «Встроенный генератор импульсов» (опция ГИП). Для управления генератором импульсов необходимо использовать программный комплекс Г7М версия 1.3 и старше.

По вопросам реализации данной возможности в остальных синтезаторах частот Г7М обращайтесь в ЗАО «НПФ «Микран» на адрес электронной почты: pribor@micran.ru.

Генератор импульсов синтезатора предназначен для формирования периодической последовательности импульсов и пачек импульсов, с количеством импульсов в пачке от 2 до 255. Работа генератора импульсов возможна только в режиме «Фиксированная

частота и мощность» при включении мощности на выходе «СВЧ». Параметры генератора импульсов представлены в таблице 2.

Управление генератором импульсов осуществляется с помощью элементов, расположенных на вкладке «Импульсная модуляция» (см. рисунок 4) и в окне «Параметры пачки радиоимпульсов» (см. рисунок 5).

Таблица 2 – Параметры генератора импульсов

Параметр	Значение
Длительность импульсов	от 20 нс до 3,99999998 с
Период повторения импульсов	от 40 нс до 4 с
Дискретность установки длительности и периода	10 нс
следования импульсов	
Длительность фронта/среза импульса	
при сопротивлении нагрузки 50 Ом	не более 1,5 нс
при сопротивлении нагрузки 1 МОм	не более 5 нс
Напряжение высокого уровня (номинальное значение)	
при сопротивлении нагрузки 50 Ом	1,5 B
при сопротивлении нагрузки 1 МОм	3,3 B
Напряжение низкого уровня (номинальное значение)	0 B

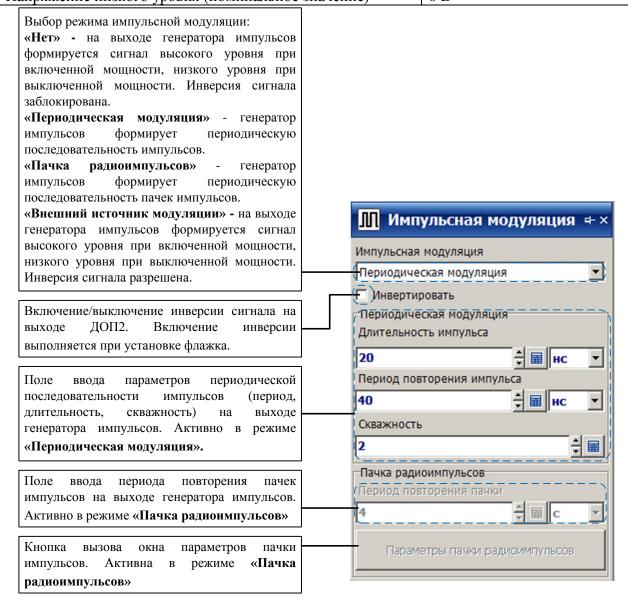


Рисунок 4 – Элементы вкладки «Импульсная модуляция»

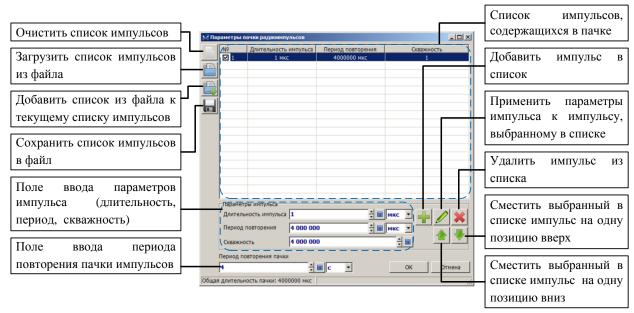


Рисунок 5 – Элементы окна «Параметры пачки радиоимпульсов»

На рисунках 6-8 представлены примеры осциллограмм сигналов, сформированных на выходе генератора импульсов.

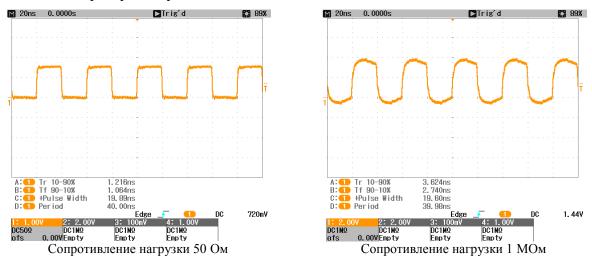


Рисунок 6 – Осциллограммы сигналов на выходе генератора импульсов. Длительность импульса 20 нс. Период повторения импульсов 40 нс.

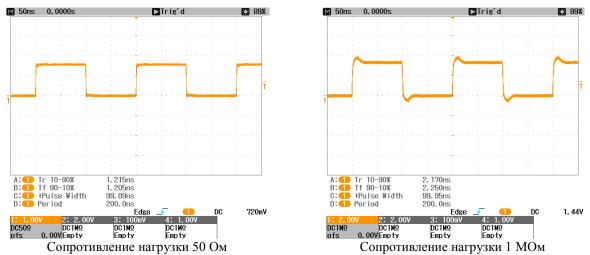


Рисунок 7 — Осциллограммы сигналов на выходе генератора импульсов. Длительность импульса 100 нс. Период повторения импульсов 200 нс.

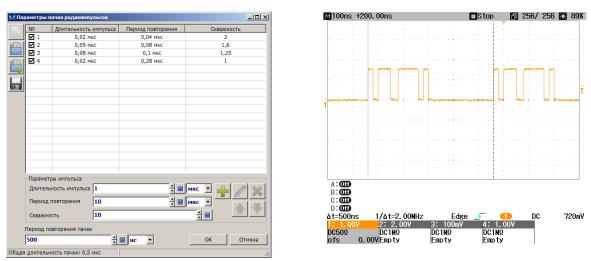
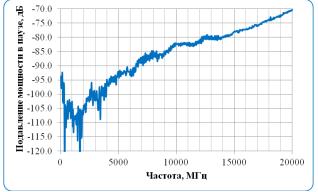


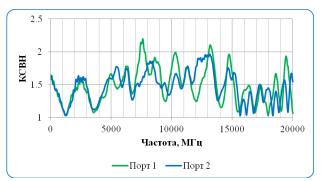
Рисунок 8 – Пачка импульсов


Формирование сигналов с импульсной модуляцией

Рассмотрим формирование сигналов с импульсной модуляцией с помощью синтезатора и внешнего модулятора серии МИ1, основные параметры которого представлены в таблице 3 и на рисунках 9, 12, при управлении от различных источников модулирующих сигналов, встроенных в синтезатор.

Таблица 3 – Параметры импульсного модулятора серии МИ1

Параметр	Значение	
Основные характеристики		
Диапазон частот	от 10 до 20000 МГц	
Подавление мощности в паузе	≥ 70 дБ	
Длительность фронта/спада радиоимпульса	< 10 нс	
Минимальная длительность импульса	20 нс	
Максимальная частота повторения импульсов	25 МГц	
Задержка между сигналом управления и радиоимпульсом	≤ 20 нс	
Вносимые потери	< 10 дБ	
КСВН	< 2,5	
Уровень входной мощности по сжатию на 1 дБ,	≥ 19 дБм	
в диапазоне частот от 0,5 до 20 ГГц		
Предельный максимальный уровень входной мощности	27 дБм	
Характеристики электропитания		
Напряжение питания	от минус 12 до минус 6 В	
Ток потребления	≤ 30 mA	
Предельное максимальное напряжение питания	минус 16 В	
Характеристики сигнала управления		
Напряжение высокого уровня (выключение мощности)	от 2 до 5 В	
Напряжение низкого уровня (включение мощности)	от 0 до 0,8 В	
Входное сопротивление	> 10 кОм	
Предельное максимальное напряжение высокого уровня	5,5 B	
Предельное минимальное напряжение низкого уровня	минус 0,5 В	
Условия эксплуатации		
Температура окружающей среды	от 5 до 50 °C	
Относительная влажность воздуха	≤80 %	
Атмосферное давление	от 630 до 800 мм рт. ст.	


Конструктивные параметры		
Тип соединителей по ГОСТ PB51914-2002	III; N; IX вар. 3; 3,5 мм	
Размер (длина/ширина/высота)	142/128/46 мм	
Macca	≤ 400 гр	

-1.0 -2.0 Вносимые потери, дБ -3.0 -4.0 -5.0 -6.0 -7.0 -8.0 -9.0 -10.0 5000 10000 15000 20000 Частота, МГц

Рисунок 9 – Подавление мощности в паузе

Рисунок 10 – Вносимые потери

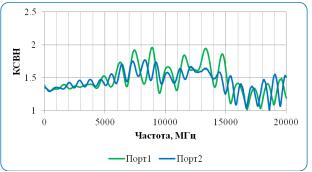


Рисунок 11 – КСВН, мощность включена

Рисунок 12 – КСВН, мощность выключена

Для того чтобы сформировать сигнал с импульсной модуляцией необходимо выполнить следующие действия:

- 1) Подготовить синтезатор к работе.
- 2) Подключить модулятор МИ1 к синтезатору в соответствии со схемой, представленной на рисунке 13. В зависимости от источника модулирующего сигнала кабель ВNС (вилка-вилка) подключается к выходу синхронизации «СИНХР» (источник модулирующего сигнала синхрогенератор) или к выходу «ДОП2» (источник модулирующего сигнала генератор импульсов).
 - 3) Включить питание модулятора импульсного МИ1-20.
 - 4) Установить на вкладке «Управление» в списке «Режим работы:» режим «Фиксированная частота и мощность».
- 5) Установить требуемую частоту и мощность выходного сигнала. При установке мощности выходного сигнала необходимо учитывать потери, вносимые импульсным модулятором МИ1.

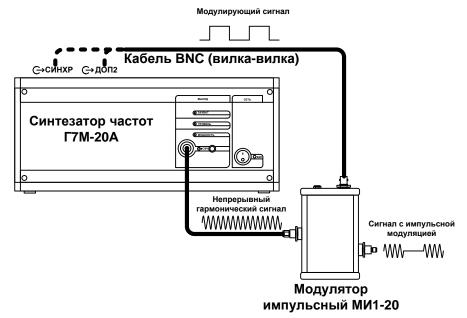


Рисунок 13 — Схема подключения модулятора импульсного МИ1-20 к синтезатору частот Г7М-20А

6) Установить требуемые параметры модулирующего сигнала. Установка параметров модулирующего сигнала зависит от источника модулирующего сигнала.

При использовании в качестве источника модулирующего сигнала синхрогенератора, необходимо на вкладке «Синхронизация»:

- Выбрать в списке «Режим синхровыхода:» режим «Транслировать синхрогенератор».
- Установить требуемую длительность и период повторения импульсов синхрогенератора в полях «Длительность импульса синхрогенератора» и «Период повторения синхрогенератора».
- Установить флажок «Инвертировать синхровыход».

При использовании в качестве источника модулирующего сигнала генератора импульсов, который работает в режиме периодической модуляции, необходимо на вкладке «Импульсная модуляция»:

- Выбрать в списке «Импульсная модуляция» режим «Периодическая модуляция».
- Установить требуемую длительность и период повторения импульсов на вкладке «Импульсная модуляция» в полях «Длительность импульса» и «Период повторения импульса».
- Установить флажок «Инвертировать».

При использовании в качестве источника модулирующего сигнала генератора импульсов, который работает в режиме формирования пачек, необходимо:

- Выбрать на вкладке «Импульсная модуляция» в списке «Импульсная модуляция» режим «Пачка радиоимпульсов».
- Нажать на вкладке «Импульсная модуляция» кнопку «Параметры пачки радиоимпульсов».
- Установить требуемые параметры пачки импульсов в окне «Параметры пачки радиоимпульсов».
- Установить на вкладке «Импульсная модуляция» флажок «Инвертировать».

На рисунке 14**Рисунок 14** представлены примеры осциллограмм сигналов с импульсной модуляцией.

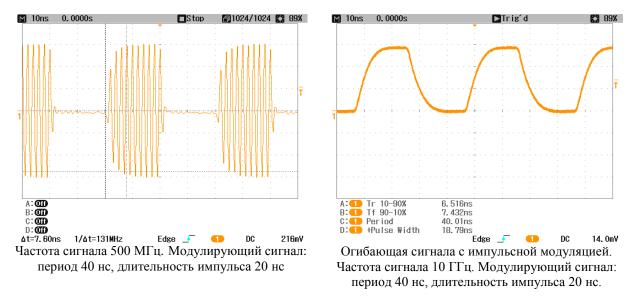


Рисунок 14 – Осциллограммы сигналов с импульсной модуляцией